Understanding Machine Learning: From Theory to Algorithms

Download Understanding Machine Learning tutorial, a complete eBook created by Shai Shalev-Shwartz and Shai Ben-David.

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.

Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks.

Table of contents

  • Introduction
  • What Is Learning?
  • When Do We Need Machine Learning?
  • Types of Learning
  • Relations to Other Fields
  • How to Read This Book
  • Possible Course Plans Based on This Book
  • Notation
  • Part I Foundations
  • A Formal Learning Model
  • PAC Learning
  • A More General Learning Model
  • Releasing the Realizability Assumption – Agnostic PAC
  • Learning
  • The Scope of Learning Problems Modeled
  • Summary
  • Bibliographic Remarks
  • Exercises
  • Learning via Uniform Convergence
  • Uniform Convergence Is Sufficient for Learnability
  • Examples
  • Threshold Functions
  • Intervals
  • Axis Aligned Rectangles
  • Finite Classes
  • VC-Dimension and the Number of Parameters
  • The Fundamental Theorem of PAC learning
  • Proof of Theorem
  • Characterizing Nonuniform Learnability
  • Structural Risk Minimization
  • Minimum Description Length and Occam’s Razor
  • Occam’s Razor
  • Other Notions of Learnability – Consistency
  • Discussing the Different Notions of Learnability
  • The No-Free-Lunch Theorem Revisited
  • Summary
  • Bibliographic Remarks
  • Exercises
  • The Runtime of Learning
  • Learning -Term DNF
  • Efficiently Learnable, but Not by a Proper ERM
  • Hardness of Learning*
  • Bibliographic Remarks
  • Exercises
  • Part II From Theory to Algorithms
  • Linear Regression
  • Least Squares
  • Linear Regression for Polynomial Regression Tasks
  • Logistic Regression
  • Bibliographic Remarks
  • Exercises
  • The VC-Dimension of L(B, T)
  • AdaBoost for Face Recognition
  • Bibliographic Re
  • xii Contents
  • k-Fold Cross Validation
  • Train-Validation-Test Split
  • What to Do If Learning Fails
  • Bibliographic Remarks
  • Exercises
  • Controlling the Fitting-Stability Tradeoff
  • Bibliographic Remarks
  • Exercises
  • Stochastic Gradient Descent
  • Gradient Descent
  • Analysis of GD for Convex-Lipschitz Functions
  • Stochastic Gradient Descent (SGD)
  • Analysis of SGD for Convex-Lipschitz-Bounded Functions
  • Learning with SGD
  • SGD for Risk Minimization
  • Analyzing SGD for Convex-Smooth Learning Problems
  • SGD for Regularized Loss Minimization
  • Bibliographic Remarks
  • Exercises
  • Support Vector Machines
  • Margin and Hard-SVM
  • Bibliographic Remarks
  • Exercises
  • Kernel Methods
  • Embeddings into Feature Spaces
  • The Kernel Trick
  • Kernels as a Way to Express Prior Knowledge
  • Characterizing Kernel Functions*
  • Implementing Soft-SVM with Kernels
  • Summary
  • Bibliographic Remarks
  • Exercises
  • Multiclass, Ranking, and Complex Prediction Problems
  • One-versus-All and All-Pairs
  • Linear Predictors for Ranking
  • Bipartite Ranking and Multivariate Performance Measures
  • Linear Predictors for Bipartite Ranking
  • Bibliographic Remarks
  • Exercises
  • Nearest Neighbor
  • Analysis
  • A Generalization Bound for the -NN Rule
  • Feedforward Neural Networks
  • Learning Neural Networks
  • The Expressive Power of Neural Networks
  • Geometric Intuition
  • The Sample Complexity of Neural Networks
  • The Runtime of Learning Neural Networks
  • SGD and Backpropagation
  • Contents xv
  • Online Learnability
  • Online Classification in the Unrealizable Case
  • Weighted-Majority
  • Online Convex Optimization
  • The Online Perceptron Algorithm
  • Summary
  • Bibliographic Remarks
  • The k-Means Algorithm
  • Spectral Clustering
  • Graph Cut
  • Graph Laplacian and Relaxed Graph Cuts
  • Unnormalized Spectral Clustering
  • Information Bottleneck*
  • Maximum Likelihood Estimation for Continuous Random Variables
  • Maximum Likelihood and Empirical Risk Minimization
  • Linear Discriminant Analysis
  • Latent Variables and the EM Algorithm

 

Size : 2540.539 Kb
File type : pdf
Downloads: 282
Created: 2019-05-01
Understanding Machine Learning: From Theory to Algorithms

Warning: Trying to access array offset on false in /home/tutovnfz/public_html/article.php on line 233

Others Machine Learning Tutorials

Machine Learning: The Complete Guide

Automated Machine Learning: Methods, Systems, Challenges

Automated Machine Learning

Understanding Machine Learning

Reinforcement Learning: An Introduction, Second Edition

Others related eBooks about Understanding Machine Learning: From Theory to Algorithms

Principles of Computer System Design: An Introduction

This is a unique, ambitious, and important book. It is about computer system design principles, and not the usual mechanics of how things work. These principles are typically embedded in research papers....

Black book for virus and hacking

Download free ebook under creative common license about virus and hacking created by Marc ludwig....

Elements of Robotics

Download free course Elements of Robotics, pdf file on 311 pages by Mordechai Ben-Ari, Francesco Mondada....

Hacking tips and tricks

Hacking tips and tricks is a free pdf tutorial intended to beginners to know the basics of computer attacks and protect themselves from hackers and cybercriminals....

Platform Embedded Security Technology Revealed

Platform Embedded Security Technology Revealed is an in-depth introduction to Intel's plat..., download free Security Technology tutorial in PDF (272 pages) created by Xiaoyu Ruan ....

The Not So Short Introduction to LaTeX 2e

This book shows you how to begin using LaTeX to create high-quality documents. The book also serves as a handy reference for all LaTeX users. In this completely revised edition, the authors cover the LaTeX2e standard and offer more details, examples, exercises, tips, and tricks. They go beyond the c...

Bing Maps V8 Succinctly

Download free course Bing Maps V8 Succinctly, pdf file on 106 pages by by James McCaffrey....

Don't Just Roll the Dice

Download free course Don't Just Roll the Dice, pdf file on 74 pages by Neil Davidson....

DevOps: WTF?

Download free course DevOps: WTF?, pdf file on 20 pages by Don Jones....

Think Bayes

If you know how to program with Python and also know a little about probability, you're re..., download free Bayes tutorial in PDF (210 pages) created by ....