Understanding Machine Learning: From Theory to Algorithms

Download Understanding Machine Learning tutorial, a complete eBook created by Shai Shalev-Shwartz and Shai Ben-David.

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms.

Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks.

Table of contents

  • Introduction
  • What Is Learning?
  • When Do We Need Machine Learning?
  • Types of Learning
  • Relations to Other Fields
  • How to Read This Book
  • Possible Course Plans Based on This Book
  • Notation
  • Part I Foundations
  • A Formal Learning Model
  • PAC Learning
  • A More General Learning Model
  • Releasing the Realizability Assumption – Agnostic PAC
  • Learning
  • The Scope of Learning Problems Modeled
  • Summary
  • Bibliographic Remarks
  • Exercises
  • Learning via Uniform Convergence
  • Uniform Convergence Is Sufficient for Learnability
  • Examples
  • Threshold Functions
  • Intervals
  • Axis Aligned Rectangles
  • Finite Classes
  • VC-Dimension and the Number of Parameters
  • The Fundamental Theorem of PAC learning
  • Proof of Theorem
  • Characterizing Nonuniform Learnability
  • Structural Risk Minimization
  • Minimum Description Length and Occam’s Razor
  • Occam’s Razor
  • Other Notions of Learnability – Consistency
  • Discussing the Different Notions of Learnability
  • The No-Free-Lunch Theorem Revisited
  • Summary
  • Bibliographic Remarks
  • Exercises
  • The Runtime of Learning
  • Learning -Term DNF
  • Efficiently Learnable, but Not by a Proper ERM
  • Hardness of Learning*
  • Bibliographic Remarks
  • Exercises
  • Part II From Theory to Algorithms
  • Linear Regression
  • Least Squares
  • Linear Regression for Polynomial Regression Tasks
  • Logistic Regression
  • Bibliographic Remarks
  • Exercises
  • The VC-Dimension of L(B, T)
  • AdaBoost for Face Recognition
  • Bibliographic Re
  • xii Contents
  • k-Fold Cross Validation
  • Train-Validation-Test Split
  • What to Do If Learning Fails
  • Bibliographic Remarks
  • Exercises
  • Controlling the Fitting-Stability Tradeoff
  • Bibliographic Remarks
  • Exercises
  • Stochastic Gradient Descent
  • Gradient Descent
  • Analysis of GD for Convex-Lipschitz Functions
  • Stochastic Gradient Descent (SGD)
  • Analysis of SGD for Convex-Lipschitz-Bounded Functions
  • Learning with SGD
  • SGD for Risk Minimization
  • Analyzing SGD for Convex-Smooth Learning Problems
  • SGD for Regularized Loss Minimization
  • Bibliographic Remarks
  • Exercises
  • Support Vector Machines
  • Margin and Hard-SVM
  • Bibliographic Remarks
  • Exercises
  • Kernel Methods
  • Embeddings into Feature Spaces
  • The Kernel Trick
  • Kernels as a Way to Express Prior Knowledge
  • Characterizing Kernel Functions*
  • Implementing Soft-SVM with Kernels
  • Summary
  • Bibliographic Remarks
  • Exercises
  • Multiclass, Ranking, and Complex Prediction Problems
  • One-versus-All and All-Pairs
  • Linear Predictors for Ranking
  • Bipartite Ranking and Multivariate Performance Measures
  • Linear Predictors for Bipartite Ranking
  • Bibliographic Remarks
  • Exercises
  • Nearest Neighbor
  • Analysis
  • A Generalization Bound for the -NN Rule
  • Feedforward Neural Networks
  • Learning Neural Networks
  • The Expressive Power of Neural Networks
  • Geometric Intuition
  • The Sample Complexity of Neural Networks
  • The Runtime of Learning Neural Networks
  • SGD and Backpropagation
  • Contents xv
  • Online Learnability
  • Online Classification in the Unrealizable Case
  • Weighted-Majority
  • Online Convex Optimization
  • The Online Perceptron Algorithm
  • Summary
  • Bibliographic Remarks
  • The k-Means Algorithm
  • Spectral Clustering
  • Graph Cut
  • Graph Laplacian and Relaxed Graph Cuts
  • Unnormalized Spectral Clustering
  • Information Bottleneck*
  • Maximum Likelihood Estimation for Continuous Random Variables
  • Maximum Likelihood and Empirical Risk Minimization
  • Linear Discriminant Analysis
  • Latent Variables and the EM Algorithm

 

Size : 2540.539 Kb
File type : pdf
Downloads: 282
Created: 2019-05-01
Understanding Machine Learning: From Theory to Algorithms

Warning: Trying to access array offset on false in /home/tutovnfz/public_html/article.php on line 233

Others Machine Learning Tutorials

Interpretable Machine Learning

Reinforcement Learning: An Introduction, Second Edition

An Introduction to Machine Learning

An Introduction to Machine Learning, 2nd Edition

A Brief Introduction to Machine Learning for Engineers

Others related eBooks about Understanding Machine Learning: From Theory to Algorithms

Raspberry Pi Tutorial

This is a free Raspberry PI PDF tutorial in 12 chapters and 43 pages. In this guide you’ll find everything you need to know about the Raspberry Pi computer, its background, purpose, system specs, the software it runs and the amazing things it is capable of. ...

MATLAB Notes for Professionals

Download free course MATLAB Notes for Professionals, pdf file on 181 pages by Stack Overflow Community....

Grid Computing - Technology and Applications, Widespread Coverage and New Horizons

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon afterwards, national and international research and development authorities realized the importance of the Grid and gave it a primary position on their research and development agenda. The Grid ...

Building the Infrastructure for Cloud Security

For cloud users and providers alike, security is an everyday concern, yet there are very f..., download free Cloud Security tutorial in PDF (244 pages) created by Raghuram Yeluri ....

Think Stats, 2nd Edition: Exploratory Data Analysis in Python

If you know how to program, you have the skills to turn data into knowledge, using tools of probability and statistics. This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. ...

Automating Manufacturing Systems with PLCs

This is a manuscript for a PLC based control system book that is currently being used for teaching an undergraduate controls course - Manufacturing Controls. The course and book focus on the Allen Bradley family of controllers, thus allowing a deeper topic coverage than is normal in PLC books....

Modern C

Download free course Modern C, pdf file on 324 pages by Jens Gustedt....

Entity-Oriented Search

Download free course Entity-Oriented Search, pdf file on 351 pages by Krisztian Balog....

Essential Git

This book written to provide clear and concise explanation of topics for programmers both starting to learn the Git programming as well as those diving in more complex topics. Most examples are linked to online playground that allows you to change the code and re-run it....

Discovering the STM32 Microcontroller

This book is intended as a hands-on manual for learning how to design systems using the STM32 F1 family of micro-controllers. It was written to support a junior-level computer science course at Indiana University. ...