Home » Others » Learning R

Learning R

Learning R

Download free course Learning R, pdf file on 619 pages by Stack Overflow Community.
R is a programming language and free software environment for statistical computing and graphics. It is an unofficial and free R ebook created for educational purposes. All the content is extracted from Stack Overflow Documentation, which is written by many hardworking individuals at Stack Overflow.

Table of contents

  • Getting started with R Language
  • *apply family of functions (functionals)
  • .Rprofile
  • Aggregating data frames
  • Analyze tweets with R
  • Arima Models
  • Arithmetic Operators
  • Bar Chart
  • Base Plotting
  • Bibliography in RMD
  • boxplot
  • caret
  • Classes
  • Cleaning data
  • Code profiling
  • Coercion
  • Color schemes for graphics
  • Column wise operation
  • Combinatorics
  • Control flow structures
  • Creating packages with devtools
  • Creating reports with RMarkdown
  • Creating vectors
  • Data acquisition
  • Data frames
  • data.table
  • Date and Time
  • Date-time classes (POSIXct and POSIXlt)
  • Debugging
  • Distribution Functions
  • dplyr
  • Expression: parse + eval
  • Extracting and Listing Files in Compressed Archives
  • Factors
  • Fault-tolerant/resilient code
  • Feature Selection in R - Removing Extraneous Features
  • Formula
  • Fourier Series and Transformations
  • Functional programming
  • Generalized linear models
  • Get user input
  • ggplot2
  • GPU-accelerated computing
  • Hashmaps
  • heatmap and heatmap.2
  • Hierarchical clustering with hclust
  • Hierarchical Linear Modeling
  • I/O for database tables
  • I/O for foreign tables (Excel, SAS, SPSS, Stata)
  • I/O for geographic data (shapefiles, etc.)
  • I/O for raster images
  • I/O for R's binary format
  • Implement State Machine Pattern using S4 Class
  • Input and output
  • Inspecting packages
  • Installing packages
  • Introduction to Geographical Maps
  • Introspection
  • JSON
  • Linear Models (Regression)
  • Lists
  • lubridate
  • Machine learning
  • Matrices
  • Meta: Documentation Guidelines
  • Missing values
  • Modifying strings by substitution
  • Natural language processing
  • Network analysis with the igraph package
  • Non-standard evaluation and standard evaluation
  • Numeric classes and storage modes
  • Object-Oriented Programming in R
  • Parallel processing
  • Pattern Matching and Replacement
  • Performing a Permutation Test
  • Pipe operators (%>% and others)
  • Pivot and unpivot with data.table
  • Probability Distributions with R
  • Publishing
  • R code vectorization best practices
  • R in LaTeX with knitr
  • R Markdown Notebooks (from RStudio)
  • R memento by examples
  • Random Forest Algorithm
  • Random Numbers Generator
  • Randomization
  • Raster and Image Analysis
  • Rcpp
  • Reading and writing strings
  • Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
  • Recycling
  • Regular Expression Syntax in R
  • Regular Expressions (regex)
  • Reproducible R
  • Reshape using tidyr
  • Reshaping data between long and wide forms
  • RESTful R Services
  • RMarkdown and knitr presentation
  • roxygen2
  • Run-length encoding
  • Scope of variables
  • Set operations
  • Shiny
  • Solving ODEs in R
  • Spark API (SparkR)
  • spatial analysis
  • Speeding up tough-to-vectorize code
  • Split function
  • sqldf
  • Standardize analyses by writing standalone R scripts
  • String manipulation with stringi package
  • strsplit function
  • Subsetting
  • Survival analysis
  • Text mining
  • The character class
  • The Date class
  • The logical class
  • tidyverse
  • Time Series and Forecasting
  • Updating R and the package library
  • Updating R version
  • Using pipe assignment in your own package %<>%: How to ?
  • Using texreg to export models in a paper-ready way
  • Variables
  • Web Crawling in R
  • Web scraping and parsing
  • Writing functions in R
  • xgboost

Pages : 619
File type : PDF
Downloads: 19
Submitted On: 2022-02-03
License: CC BY-SA
Author(s): Stack Overflow Community

Take advantage of this course called Learning R to improve your Others skills and better understand Computer science.

This course is adapted to your level as well as all Computer science pdf courses to better enrich your knowledge.

All you need to do is download the training document, open it and start learning Computer science for free.

This tutorial has been prepared for the beginners to help them understand basic Computer science Others. After completing this tutorial you will find yourself at a moderate level of expertise in Computer science from where you can take yourself to next levels.

This tutorial is designed for Computer science students who are completely unaware of Computer science concepts but they have basic understanding on Others training.


Tutorials in the same categorie :