Download computer tutorials in PDF

Machine Learning with TensorFlow

TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a single machine.

This book gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. You'll learn the basics by working with classic prediction, classification, and clustering algorithms. Then, you'll move on to the money chapters: exploration of deep-learning concepts like autoencoders, recurrent neural networks, and reinforcement learning. Digest this book and you will be ready to use TensorFlow for machine-learning and deep-learning applications of your own.

Pages : 227 pages
Size : HTML
Downloads: 15
Created: 2020-08-29
License: Free to read online (entire book) by the publisher.
Author(s): Nishant Shukla

Warning: Trying to access array offset on false in /home/tutovnfz/public_html/amp/article-amp.php on line 263

Download file

Others related eBooks about Machine Learning with TensorFlow

Reinforcement Learning: An Introduction, Second Edition

Reinforcement Learning (RL), one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard

A Brief Introduction to Machine Learning for Engineers

This book aims at providing an introduction to key concepts, algorithms, and theoretical frameworks in machine learning, including supervised and unsupervised learning, statistical learning theory, probabilistic graphical models and approximate inference. The intended readership consists of electric

Automated Machine Learning: Methods, Systems, Challenges

This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems.