Download free course Think Complexity, pdf file on 228 pages by Allen Downey.
Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics.
Whether you're an intermediate-level Python programmer or a student of computational modeling, you'll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations.
In this updated second edition, you will: Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform; Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines; Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata; Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism.
Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
Whether you're an intermediate-level Python programmer or a student of computational modeling, you'll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations.
In this updated second edition, you will: Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform; Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines; Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata; Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism.
Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
Table of contents
- Preface
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- A Reading list
Pages : | 228 |
Size : | 6.6 MB |
Downloads: | 54 |
Created: | 2022-02-03 |
License: | CC BY-NC-SA |
Author(s): | Allen Downey |
Warning: Trying to access array offset on false in /home/tutovnfz/public_html/amp/article-amp.php on line 263
Others related eBooks about Think Complexity
Download free course Introduction to CNTK Succinctly, pdf file on 124 pages by James McCaffrey.
Download free course Building Games for Firefox OS, pdf file on 125 pages by by Andre Garzia.
Download free course The Express Handbook, pdf file on 61 pages by Flavio Copes.
Download free course Learning SAS, pdf file on 33 pages by Stack Overflow Community.
Download free course Policy-Oriented Technology Assessment Across Europe: Expanding Capacities, pdf file on 188 pages by Lars Klüver, Rasmus Øjvind Nielsen, Marie Louise Jørgensen.