Download free course Probability and Statistics for Computer Science, pdf file on 374 pages by David Forsyth.
This book is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning.With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features:
- A treatment of random variables and expectations dealing primarily with the discrete case.
- A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains.
- A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing.
- A chapter dealing with classification, explaining why it's useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors.
- A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems.
- A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis.
- A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals.
Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.
- A treatment of random variables and expectations dealing primarily with the discrete case.
- A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains.
- A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing.
- A chapter dealing with classification, explaining why it's useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors.
- A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems.
- A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis.
- A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals.
Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.
Table of contents
Pages : | 374 |
Size : | 6.0 MB |
Downloads: | 78 |
Created: | 2022-02-03 |
License: | CC BY |
Author(s): | David Forsyth |
Warning: Trying to access array offset on false in /home/tutovnfz/public_html/amp/article-amp.php on line 263
Others related eBooks about Probability and Statistics for Computer Science
Download free course Kotlin Notes for Professionals, pdf file on 93 pages by Stack Overflow Community.
Download free course Introduction to OKRs, pdf file on 37 pages by Christina Wodtke.
Download free course Data Protection for the Hybrid Cloud, pdf file on 115 pages by Shreesh Dubey, Vijay Tandra Sistla, Shivam Garg, Aashish Ramdas, Mitch Tulloch.
Download free course Peer Participation and Software, pdf file on 113 pages by David R. Booth.
Download free course PowerShell Notes for Professionals, pdf file on 183 pages by Stack Overflow Community.